Поезда на магнитной подушке

Достоинства

Какие достоинства у поездов маглев?

  1. Высокая скорость делает такие поезда лидерами наземного транспорта.
  2. Эффективное использование электроэнергии по сравнению с действующими поездами на электрической тяге и электромобилями.
  3. Низкие затраты в эксплуатации из-за отсутствия трущихся деталей, таких как колёса, тормозные накладки, рельсы.
  4. Возможности увеличения скорости до нескольких тысяч км/час при движении поезда в вакуумной трубе. Эксперименты по такому виду передвижения проводились ещё первооткрывателями, но практическое применение требует новых технологий и огромных капиталовложений.
  5. Отсутствие шума обычного поезда: стук колёс на стыках рельс, звуки от трения колёс о рельсы.

История становления

Первые страницы истории маглев были заполнены рядами патентов, полученных в начале XX века в разных странах. Еще в 1902 году патентом на конструкцию поезда, оснащенного линейным двигателем, отметился немецкий изобретатель Альфреда Зейден. А уже спустя четыре года Франклин Скотт Смит разработал еще один ранний прототип поезда на электромагнитном подвесе. Немного позже, в период с 1937 года по 1941 год, еще нескольких патентов относящихся к поездам, оснащенным линейными электродвигателями, получил немецкий инженер Герман Кемпер. К слову, подвижные составы Московской монорельсовой транспортной системы, построенной в 2004 г., используют для движения асинхронные линейные двигатели – это первый в мире монорельс с линейным двигателем.

Поезд Московской монорельсовой системы возле станции Телецентр

В конце 1940-х годов исследователи перешли от слова к делу. Британскому инженеру Эрику Лэйзвейту, которого многие называют «отцом маглевов», удалось разработать первый рабочий полноразмерный прототип линейного асинхронного двигателя. Позже, в 1960-х годах, он присоединился к разработке скоростного поезда Tracked Hovercraft. К сожалению, в 1973 году проект закрыли из-за нехватки средств.

Прототип поезда с линейным двигателем RTV 31 (проект Tracked Hovercraft)

В 1979 году появился первый в мире прототип поезда на магнитной подушке, лицензированный для предоставления услуг по перевозке пассажиров – Transrapid 05. Испытательный трек длиной 908 м был построен в Гамбурге и представлен в ходе выставки IVA 79. Интерес к проекту оказался настолько велик, что Transrapid 05 удалось успешно проработать еще три месяца после окончания выставки и перевезти в общей сложности около 50 тыс. пассажиров. Максимальная скорость этого поезда составляла 75 км/ч.

Система Transrapid 05 на выставке IVA 79

А первый коммерческий магнитоплан появился в 1984 году в Бирмингеме, Англия. Железнодорожная линия на магнитном подвесе соединяла терминал международного аэропорта Бирмингема и расположенную рядом железнодорожную станцию. Она успешно проработала с 1984 по 1995 год. Протяженность линии составляла всего 600 м, а высота, на которую состав с линейным асинхронным двигателем поднимался над полотном дороги – 15 миллиметров. В 2003 году на ее месте была построена система пассажирских перевозок AirRail Link на базе технологии Cable Liner.

В 1980-х годах к разработке и реализации проектов по созданию высокоскоростных поездов на магнитной подушке приступили не только в Англии и Германии, но и в Японии, Корее, Китае и США.

Примечания

  1. JR-Maglev, скорость до 581 км/ч с пассажирами на борту
  2. Вакуумный поезд
  3.  (недоступная ссылка). Дата обращения: 15 апреля 2010.
  4. «Vactrain»
  5.  (недоступная ссылка). Дата обращения: 20 марта 2012.
  6.  (англ.). World Health Organization. Дата обращения: 21 ноября 2017.
  7. . web.archive.org (26 мая 2013). Дата обращения: 15 сентября 2021.
  8.  (англ.).
  9.  (нем.).
  10.  (нем.).
  11.  (нем.).
  12. М.Николаев. Поезда без колес // Известия. — 1977. — 1 декабрь (№ 18736). — С. 2.
  13. Николай Ульянов Магнит тянет в полёт // Эксперт, 2021, № 18-19. — с. 26-33
  14. . China.org.cn (9 июля 2014).
  15. . Railway Gazette (4 апреля 2016).
  16. . China Daily (27 ноября 2014).
  17. . People’s Daily Online (6 мая 2015).
  18. .

Внутри поезда Маглев

Шанхайский поезд «Маглев» укомплектован современными, просторными и удобными вагонами. В каждом есть кондиционер, и пассажиры имеют возможность сами регулировать температуру. Кресла скомплектованы два в ряд (VIP-класс) или по три в ряд (стандартные места). Для пассажиров в вагонах установлены ЖК-экраны, на которых отображается текущая скорость поезда и время. И когда на экране появляется максимальная скорость (431км/ч), некоторые пассажиры фотографируют экран.


Стандартный вагон поезда «Маглев»


VIP-класс в поезде «Маглев»


Места пассажиров VIP-класс в поезде «Маглев»


Табло текущей скорости в поезде «Шанхайский Маглев»

История

Строительство линии началось 1 марта 2001 года, а общественные коммерческие перевозки начались 1 января 2004 года. Максимальная эксплуатационная коммерческая скорость этого поезда составляет 431 км / ч (268 миль в час), что делает его самым быстрым в мире поездом, курсирующим на регулярных коммерческих рейсах с тех пор. его открытие состоялось в апреле 2004 года. Во время некоммерческого пробного запуска 12 ноября 2003 года, пилотируемым Джонатаном Тексиерой, поезд на магнитной подвеске достиг китайского рекорда скорости 501 км / ч (311 миль в час). Шанхайский маглев имеет длину 153 метра (502 фута), ширину 3,7 метра (12 футов), высоту 4,2 метра (14 футов) и трехклассную конфигурацию с 574 пассажирами.

Модель поезда (SMT Transrapid) была построена совместным предприятием Siemens и ThyssenKrupp из Касселя , Германия, на основе многолетних испытаний и усовершенствований их монорельсовой дороги Transrapid на магнитной подвеске. Трасса Shanghai Maglev (направляющая) была построена местными китайскими компаниями, которые из-за состояния аллювиальных почв в районе Пудун были вынуждены отклониться от первоначальной конструкции пути: от одной опорной колонны каждые 50 метров до одной колонны каждые 25 метров. чтобы обеспечить соответствие направляющей критериям стабильности и точности. Несколько тысяч бетонных свай были забиты на глубину до 70 метров для обеспечения устойчивости фундаментов опорных колонн. Рядом с полосой отвода линии для производства направляющих был построен завод протяженностью в милю с климат-контролем. Поезд изготовлен в Германии на СП Сименс-Тиссенкрупп.

Электрификация поезда была разработана VAHLE, Inc. Две системы коммерческого Maglev предшествовали систему Шанхая: чем в Соединенном Королевстве и Берлин M-Bahn . Оба были низкоскоростными и были закрыты до открытия Шанхайского поезда на магнитной подвеске.

Поезд был открыт в 2002 году канцлер Германии , Герхард Шредер и китайского премьера, Чжу Жунцзи . Первоначальное открытие было только для тура, предусматривая поездку туда и обратно. Поезд отправляется от Longyang Rd. Станция, скорость до 431 км / ч и прибывает в аэропорт Пудун. После очень короткого перерыва поезд возвращается, не открывая двери. Цена была 150 юаней за обычные места и 300 юаней за VIP место. Нормальная эксплуатация началась 10 октября 2003 года.

Under construction

Old Dominion University

A track of less than a mile in length was constructed at Old Dominion University in Norfolk, Virginia. Although the system was initially built by American Maglev Technology, Inc. (AMT), problems caused the company to turn it over to the University for research. The system is currently not operational, but research is ongoing to resolve stability issues with the system. This system uses a «smart train, dumb track» that involves most of the sensors, magnets, and computation occurring on the train rather than the track. This system will cost less to build per mile than existing systems. Unfortunately, the $14 Million originally planned did not allow for completion.

AMT Test Track — Powder Springs, GA

A second prototype system in Powder Springs, Georgia, USA, was built by American Maglev Technology, Inc. The test track is 610 m (2,000 ft) long with a 168.6 m (553 ft) curve. Vehicles are operated up to 60 km/h (37 mph), below the proposed operational maximum of 97 km/h (60 mph). A June 2013 review of the technology called for an extensive testing program to be carried out to ensure the system complies with various regulatory requirements including the American Society of Civil Engineers (ASCE) People Mover Standard. The review noted that the test track is too short to assess the vehicles’ dynamics at the maximum proposed speeds.

Pros and cons of maglev vs. conventional trains

Due to the lack of physical contact between the track and the vehicle, there is no rolling friction, leaving only air resistance (although maglev trains also experience electromagnetic drag, this is relatively small at high speeds).

Maglevs can handle high volumes of passengers per hour (comparable to airports or eight-lane highways) and do it without introducing air pollution along the right of way. Of course, the electricity has to be generated somewhere, so the overall environmental impact of a maglev system is dependent on the nature of the grid power source.

The weight of the large electromagnets in EMS and EDS designs is a major design issue. A very strong magnetic field is required to levitate a massive train. For this reason one research path is using superconductors to improve the efficiency of the electromagnets.

The high speed of some maglev trains translates to more sound due to air displacement, which gets louder as the trains go faster. A study found that high speed maglev trains are 5dB noisier than traditional trains.At low speeds, however, maglev trains are nearly silent.

Операция

Линия обслуживается компанией Shanghai Maglev Transportation Development Co., Ltd и работает с 06:45 до 21:30, отправляя ее каждые 15–20 минут. Билет в один конец стоит 50 йен (8 долларов США) или 40 йен (6,40 доллара США) для пассажиров, имеющих квитанцию ​​или подтверждение покупки авиабилета. Билет туда и обратно стоит 80 йен (12,80 долларов), а VIP- билеты стоят вдвое дороже стандартной.

После открытия общее количество пассажиров поездов на магнитной подвеске составило 20%. Уровни были связаны с ограниченным графиком работы, короткой протяженностью линии, высокими ценами на билеты и тем, что линия заканчивается на Лунъян-роуд в Пудуне — еще 20 минут на метро от центра города.

  • В феврале 2003 года поезд шанхайского маглева перевез 18 000 гостей в течение первых девяти дней лунного Нового года;
  • По состоянию на 31 августа 2004 г. общая пассажировместимость поездов Shanghai Maglev достигла 1,45 миллиона, а общий безопасный пробег — 1,02 миллиона километров;
  • По состоянию на конец марта 2006 года совокупный безопасный пробег поездов Shanghai Maglev превысил 2,4 миллиона километров и перевезти 6,23 миллиона пассажиров;
  • 1 октября 2007 года однодневный пассажиропоток Shanghai Maglev Train впервые превысил 20 000 человек;
  • По состоянию на 5 сентября 2017 года поезда Shanghai Maglev перевезли в общей сложности 50 миллионов пассажиров и безопасно преодолели 16,88 миллиона километров.
Дневные часы 06: 45–08: 45 09: 00–10: 45 11: 00–14: 45 15: 00–15: 45 16: 00–19: 00 19: 00–21: 40
Время в пути (минуты) 8:10 7:20 8:10 7:20 8:10 8:10
Максимальная скорость 300 км / ч (186 миль / ч) 431 км / ч (268 миль / ч) 300 км / ч (186 миль / ч) 431 км / ч (268 миль / ч) 300 км / ч (186 миль / ч) 300 км / ч (186 миль / ч)
Средняя скорость 224 км / ч (139 миль / ч) 249,5 км / ч (155 миль / ч) 224 км / ч (139 миль / ч) 249,5 км / ч (155 миль / ч) 224 км / ч (139 миль / ч) 224 км / ч (139 миль / ч)
Интервал 20 минут 15 минут 15 минут 15 минут 15 минут 20 минут

В дополнение к вышеупомянутым 57 ежедневным двусторонним поездам, с октября 2016 года два дополнительных односторонних поезда отправляются по расписанию в 22:15 и 22:40 из аэропорта Пудун до Longyang Road примерно на 8 минут. Время в пути было ускорено. значительно, так как 30 км (19 миль) путешествие занимает 45 минут по дороге.

Станции

Полная поездка на поезде от станции Longyang Road до станции Pudong International Airport и обратно.

Название станции Подключения (вне системы) Расстояние Продолжительность Расположение Открыт Платформа
английский китайский язык км ми 431км / ч 300 км / ч
Longyang Road 龙阳路  2   7 16       0ч 0м Пудун 31 декабря 2002 г. Повышенная двойная сторона и остров
Международный аэропорт Пудун 浦东 国际 机场 30+1 ⁄ 2 18,95 7 мин. 20 сек. 8м 10с Сторона на уровне ранга

Ценообразование

Цена не изменилась с момента начала эксплуатации Маглева.

Тип билета Цена (юаней) Примечания
Билет на разовую поездку 50 Действительно для обычного билета на один день
Билет на разовую поездку при предъявлении авиабилета того же дня 40 Выгодный билет на разовую поездку для пассажира, который садится на самолет в тот же день
Билет на разовую поездку и билет на метро 55 Метро — это однодневный билет
Билет туда — обратно 80 Действителен для обычного билета туда и обратно через 7 дней
Билет туда и обратно и билет на метро 85 Метро однодневный билет можно использовать отдельно в течение срока действия.
Билет на разовую поездку VIP 100 Действительно для одноразового VIP-билета дня
VIP-билет туда и обратно 160 Действителен для VIP-билета туда и обратно в течение 7 дней

Эксплуатационные расходы

В заявлении Transrapid USA за 2007 год говорится, что с 4 миллионами пассажиров в 2006 году система смогла покрыть свои эксплуатационные расходы. Соотношение затрат было следующим: 64% — энергия, 19% — техническое обслуживание и 17% — операции / вспомогательные услуги; сумма не была указана. Высокая доля затрат на электроэнергию объяснялась коротким временем поездки и высокой скоростью работы. Однако, согласно сообщениям китайских СМИ, из-за огромных эксплуатационных расходов и отсутствия пассажиропотока Shanghai Maglev Transportation Company ежегодно теряет от 500 до 700 миллионов юаней.

Economics

The Shanghai maglev cost 9.93 billion yuan (US$1.2 billion) to build. This total includes infrastructure capital costs such as manufacturing and construction facilities, and operational training. At 50 yuan per passenger and the current 7,000 passengers per day, income from the system is incapable of recouping the capital costs (including interest on financing) over the expected lifetime of the system, even ignoring operating costs.

China aims to limit the cost of future construction extending the maglev line to approximately 200 million yuan (US$24.6 million) per kilometer. These costs compare competitively with airport construction (for example, Hong Kong Airport cost US$20 billion to build in 1998) and eight-lane Interstate highway systems that cost around US$50 million per mile in the US.

While high-speed maglevs are expensive to build, they are less expensive to operate and maintain than traditional high-speed trains, planes or intercity buses. Data from the Shanghai maglev project indicates that operation and maintenance costs are covered by the current relatively low volume of 7,000 passengers per day. Passenger volumes on the Pudong International Airport line are expected to rise dramatically once the line is extended from Longyang Road metro station all the way to Shanghai’s downtown train depot.

The proposed Chūō Shinkansen maglev in Japan is estimated to cost approximately US$82 billion to build.

The only low-speed maglev (100 km/h) currently operational, the Japanese Linimo HSST, cost approximately US$100 million/km to build. Besides offering improved O&M costs over other transit systems, these low-speed maglevs provide ultra-high levels of operational reliability and introduce little noise and zero air pollution into dense urban settings.

As maglev systems are deployed around the world, experts expect construction costs to drop as new construction methods are perfected.

Реализация

M-Bahn в Берлине

Это первая система Маглев, которая была построена в 1980 году. Дорога имеет длину в 1.6 км и соединяет между собою три станции. Запуск этой дороги состоялся 28 августа 1989 года. На протяжении 9 лет длились испытания. Из-за того, что магнитная дорога перекрывала важный участок метро ее, демонтировали в 31 июля 1991 года.

Бирмингем

Это не скоростной Маглев-челнок. Он ходил от Бирмингемского аэропорта до ближайшей железнодорожной станции с 1984 по 1995 год. Длина трассы составляла всего 600 метров, а высота подвеса 1.5 см. Дорога проработала на протяжении 10 лет. После этого была закрыта по жалобам пассажиров.

Шанхай

Немецкую компанию Transrapid совершенно не отпугнула первая неудача в Берлине. Дочерние предприятия Siemens AG и ThyssenKrup не отказывались от разработки магнитной железной дороги. В результате длительной работы компании получили заказ от китайского правительства на строительство высокоскоростной трассы от Шанхайского аэропорта Пудун до Шанхая.

Высокоскоростной Маглев в Шанхае

Эта дорога была открыта в 2002 году и ее продолжительность составила 30 км. В будущем правительство планирует ее удлинить до старого аэропорта Хунцяо и далее на юго-запад Ханчжоу. После этого ее продолжительность составит 175 километров.

Япония

В Японии испытывается дорога, которая расположилась в окрестностях префектуры Яманаси. Ее строительство происходило по технологии JR-Maglev. В процессе проведения испытаний MLX01-901 с пассажирами удалось добиться скорости в 581 км/час.

К открытию выставки EXPO 2005 в эксплуатацию также была введена еще одна новая трасса, которая имеет протяжность в 9 км и состоит из 9 станций. Поезда, которые работают на этой линии изготовлены компанией Chubu HSST Developmtnt Corp.

Поезд будущего

Он стоит перед нами — большой, футуристического дизайна, похожий скорее на космический корабль из научно-фантастического фильма, нежели на транспортное средство. Обтекаемый алюминиевый кузов, сдвижная дверь, стилизованная надпись «ТП-05» на борту. Экспериментальный вагон на магнитном подвесе стоит на полигоне неподалеку от Раменского уже 25 лет, целлофан покрыт густым слоем пыли, под ним — удивительная машина, которую чудом не разрезали на металл по доброй русской традиции. Но нет, он сохранился, и сохранился ТП-04, его предшественник, предназначенный для испытаний отдельных узлов.

Экспериментальный вагон в цеху — уже в новой раскраске. Его перекрашивали несколько раз, а для съёмок в фантастическом короткометражном фильме сделали на борту большую надпись Fire-ball.

Разработка маглева уходит корнями в 1975 год, когда при Миннефтегазстрое СССР появилось производственное объединение «Союзтранспрогресс». Несколькими годами позже стартовала государственная программа «Высокоскоростной экологически чистый транспорт», в рамках которой и началась работа над поездом на магнитной подушке. С финансированием было очень неплохо, под проект построили специальный цех и полигон института ВНИИПИтранспрогресс с 120-метровым участком дороги в подмосковном Раменском. А в 1979 году первый вагон на магнитной подушке ТП-01 успешно прошел испытательную дистанцию своим ходом — правда, еще на временном 36-метровом участке завода «Газстроймашина», элементы которого позже «переехали» в Раменское

Обратите внимание — одновременно с немцами и раньше многих других разработчиков! В принципе, СССР имел шансы стать одной из первых стран, развивающих магнитный транспорт, — работой занимались настоящие энтузиасты своего дела во главе с академиком Юрием Соколовым

Магнитные модули (серые) на рельсе (оранжевом). Прямоугольные бруски по центру фотографии — это как раз датчики зазора, отслеживающие неровности поверхности. Электронику с ТП-05 сняли, но магнитное оборудование осталось, и, в принципе, вагон снова можно запустить.

Экспедицию «Популярной механики» возглавил не кто иной, как Андрей Александрович Галенко, генеральный директор ОАО инженерно-научного центра «ТЭМП». «ТЭМП» — это та самая организация, экс-ВНИИПИтранспрогресс, отделение канувшего в Лету «Союзтранспрогресса», а Андрей Александрович работал над системой с самого начала, и вряд ли кто мог бы рассказать о ней лучше него. ТП-05 стоит под целлофаном, и первым делом фотограф говорит: нет, нет, мы не сможем это сфотографировать, тут же ничего не видно. Но затем мы стягиваем целлофан — и советский маглев впервые за долгие годы предстает перед нами, не инженерами и не сотрудниками полигона, во всей красе.

Proposals

Many maglev systems have been proposed in various nations of North America, Asia, and Europe. Many of the systems are still in the early planning stages, or, in the case of the transatlantic tunnel, mere speculation. However, a few of the following examples have progressed beyond that point.

United Kingdom

London – Glasgow: A maglev line has recently been proposed in the United Kingdom from London to Glasgow with several route options through the Midlands, Northwest and Northeast of England and is reported to be under favorable consideration by the government. A further high speed link is also being planned between Glasgow to Edinburgh though there is no settled technology for this concept yet, i.e., (Maglev/Hi Speed Electric etc)

Japan

TokyoーNagoyaーOsaka


The Chūō Shinkansen route (bold yellow and red line) and existing Tōkaidō Shinkansen route (thin blue line)

The master plan for the Chuo Shinkansen bullet train system was finalized based on the Law for Construction of Countrywide Shinkansen. The Linear Chuo Shinkansen Project aims to realize this plan through utilization of the Superconductive Magnetically Levitated Train, which connects Tokyo and Osaka by way of Nagoya, the capital city of Aichi in approximately one hour at a speed of 500km/h.

This new high speed maglev line is planned to become operational in 2027, with construction starting 2017.

Venezuela

Caracas – La Guaira: A maglev train is scheduled to be built this year connecting the capital city Caracas to the main port town of La Guaira and Simón Bolívar International Airport. Due to the extremely mountainous conditions which exist over this path, with traditional rail extensive use of tunnelling and bridging is required. Maglev systems can negotiate altitudes of up to 10 percent, much steeper than those negotiable by standard rail systems, and as it may simply be able to climb over obstacles rather than be required to tunnel through or bridge over, this may make the maglev proposal more economically sound. The system is slated to be a stand-alone system of about 15 km.

China

Shanghai – Hangzhou: China has decided to extend the world’s first commercial Transrapid line between Pudong airport and the city of Shanghai initially by some 35 kilometers to Hong Qiao airport before the World Expo 2010 and then, in an additional phase, by 200 kilometers to the city of Hangzhou (Shanghai-Hangzhou Maglev Train), becoming the first inter-city Maglev rail line in commercial service in the world. The line will be an extension of the Shanghai airport Maglev line.

Talks with Germany and Transrapid Konsortium about the details of the construction contracts have started. On March 7 2006, the Chinese Minister of Transportation was quoted by several Chinese and Western newspapers as saying the line was approved.

United States

California-Nevada Interstate Maglev: High-speed maglev lines between major cities of southern California and Las Vegas are also being studied via the California-Nevada Interstate Maglev Project. This plan was originally supposed to be part of an I-5 or I-15 expansion plan, but the federal government has ruled it must be separated from interstate public work projects.

Since the federal government decision, private groups from Nevada have proposed a line running from Las Vegas to Los Angeles with stops in Primm, Nevada; Baker, California; and points throughout Riverside County into Los Angeles. Southern California politicians have not been receptive to these proposals; many are concerned that a high speed rail line out of state would drive out dollars that would be spent in state «on a rail» to Nevada.

Baltimore-Washington D.C. Maglev: A 64 km project has been proposed linking Camden Yards in Baltimore and Baltimore-Washington International (BWI) Airport to Union Station in Washington, D.C. It is in demand for the area due to its current traffic/congestion problems. The Baltimore proposal is competing with the above-referenced Pittsburgh proposal for a $90 million federal grant.

Технология

На данный момент существует 3 основных технологии магнитного подвеса поездов:

  1. На сверхпроводящих магнитах (электродинамическая подвеска, EDS)
  2. На электромагнитах (электромагнитная подвеска, EMS)
  3. На постоянных магнитах; это новая и потенциально самая экономичная система.

Состав левитирует за счёт отталкивания одинаковых магнитных полюсов и, наоборот, притягивания противоположных полюсов. Движение осуществляется линейным двигателем, расположенным либо на поезде, либо на пути, либо и там, и там. Серьёзной проблемой проектирования является большой вес достаточно мощных магнитов, поскольку требуется сильное магнитное поле для поддержания в воздухе массивного состава.

Наиболее активные разработки маглева ведут Германия, Япония, Китай, и Южная Корея.

Поездка в поезде Transrapid по маршруту Шанхай — Аэропорт Пудун — Шанхай. Виды из салона и кабины поезда

Достоинства

  • Низкая стоимость создания и обслуживания колеи (стоимость постройки одного километра магнитной колеи, около 18 миллионов долларов, к примеру проходка километра тоннеля метро закрытым способом, около 120 миллионов долларов).
  • Самая высокая скорость из всех видов общественного наземного транспорта.
  • Достаточно низкое потребление электроэнергии (энергия у маглева расходуется в три раза эффективнее, чем у автомобиля и в пять раз — чем у самолёта).
  • Снижение эксплуатационных затрат в связи со значительным уменьшением трения деталей.
  • Огромные перспективы по достижению скоростей, многократно превышающих скорости, используемые в реактивной авиации при уменьшении аэродинамического сопротивления путём помещения состава в вакуумный тоннель. В связи с этим прорабатываются проекты по использованию магнитных ускорителей в качестве средства вывода полезной нагрузки в космос.
  • Низкий шум[источник не указан 774 дня].

Недостатки

  • Рельсовые пути стандартной ширины, перестроенные под скоростное движение, остаются доступными для обычных пассажирских и пригородных поездов. Путь маглева ни для чего другого не пригоден; потребуются дополнительные пути для низкоскоростного сообщения.
  • Электромагнитное загрязнение. А также не нашедший на данный момент подтверждения, который гипотетически мог бы отрицательно воздействовать на окружающую среду и здоровье людей. Возможны помехи в работе электроприборов.

Credits

New World Encyclopedia writers and editors rewrote and completed the Wikipedia article
in accordance with New World Encyclopedia standards. This article abides by terms of the Creative Commons CC-by-sa 3.0 License (CC-by-sa), which may be used and disseminated with proper attribution. Credit is due under the terms of this license that can reference both the New World Encyclopedia contributors and the selfless volunteer contributors of the Wikimedia Foundation. To cite this article click here for a list of acceptable citing formats.The history of earlier contributions by wikipedians is accessible to researchers here:

Maglev train  history

The history of this article since it was imported to New World Encyclopedia:

History of «Maglev train»

Note: Some restrictions may apply to use of individual images which are separately licensed.

Поезд на магнитной подушке, летающий поезд, маглев.

Технология находится в процессе разработки!

Поезд на магнитной подушке – летающий поезд, магнитоплан или маглев – это поезд, удерживаемый над полотном дороги, движимый и управляемый силой электромагнитного либо магнитного поля.

Описание:

Поезд на магнитной подушке – летающий поезд, магнитоплан или маглев (от англ. magnetic levitation – «магнитная левитация») – это поезд, удерживаемый над полотном дороги, движимый и управляемый силой электромагнитноголибо магнитного поля.

В отличие от традиционных железнодорожных поездов, в процессе движения маглев не касается поверхности рельса. Поэтому скорость данного транспорта может быть сопоставима со скоростью самолета. На сегодняшний день максимальная скорость такого поезда – 581 км/ч (Япония).

Поезд на электромагнитной подвеске (EMS) :

Электромагнитная подвеска (EMS) позволяет поезду левитировать, используя электромагнитное поле с изменяющейся по времени силой. Система представляет собой путь, сделанный из проводника и систему электромагнитов, установленных на поезде.

– магнитные поля внутри и снаружи транспортного средства меньше, чем у системы EDS,

– экономически выгодная реализуемая и доступная технология,

– высокие скорости (500 км/ч),

– нет нужды в дополнительных системах подвески.

– нестабильность: требуется постоянный контроль и корректировка колебания магнитного поля путей и состава,

– процесс выравнивания по допускам внешними средствами может привести к нежелательной вибрации.

Поезд на электродинамической подвеске (EDS):

Система на электродинамической подвеске (EDS) создает левитацию изменяющимся магнитным полем в путях и поля, создаваемого магнитами на борту состава поезда.

– развитие сверхбольших скоростей (603 км/ч) и способность выдерживать большие нагрузки.

–  невозможность левитировать на низких скоростях, необходимость в большой скорости, чтобы была достаточно отталкивающая сила хотя бы для удержания на весу поезда (поэтому подобные поезда используют колеса),

– сильное магнитное излучение вредно и небезопасно для пассажиров со слабым здоровьем и с кардиостимуляторами, для магнитных носителей данных.

Системы магнитной левитации поезда на постоянных магнитах Inductrack:

В настоящее время актуальной к воплощению является система на постоянных магнитах Inductrack, которая является разновидностью системы EDS.

– потенциально самая экономичная система,

– низкая мощность для активации магнитов,

– магнитное поле локализовано ниже вагона,

– поле левитации генерируется уже при скорости 5 км/ч,

– при сбое питания вагоны останавливаются безопасно,

– множество постоянных магнитов может оказаться более эффективным, чем электромагниты.

– требуются колеса или специальный сегмент пути, поддерживающий поезд при его остановке.

Система RusMaglev:

Левитация RusMaglev является российской разработкой. Левитация создается постоянными магнитами (неодим-железо-бор) на борту состава поезда. Пути выполнены из алюминия. Система не требует абсолютно никакого подвода электричества.

– экономичнее высокоскоростной магистрали,

– не требуется электричества,

– высокие скорости – более 400 км/ч,

– поезд левитирует при нулевой скорости,

– перевозка грузов в 2 раза дешевле, чем перевозка грузов по существующей железной дороге. 

Примечание: Фото https://www.pexels.com

Найти что-нибудь еще?

карта сайта

маглев поезд на магнитной подушке принцип работы видео китай скорость шанхай устройство сссряпонские китайские поезда на магнитной подушке в японии в россии китай в шанхае в москве игрушкаскорость поездов на магнитной подушкемаглев скоростной поезд на магнитной подушкесон летающий поезд мультик франция сканворд dahir insaatлетают ли поезда песняпоезд который умеет летатьлетающие поезда будущего в россии в японииконцепция летающего поездаскачать музыку летать поездашанхайский маглев поезд шанхай расписание скорость 2018 видео япония в россииветрогенератор маглев схема википедия время работы стоимость китаймодель маглеварусский российский японский технология маглев линия цена купить оренбургсколько стоит прокладка маглев колеи

Коэффициент востребованности
743

Наиболее серьёзные аварии

  • Было два инцидента, связанных с пожарами. Японский испытательный поезд MLU002, действовавший в Миядзаки, был полностью уничтожен в результате пожара в 1991 году.
  • 11 августа 2006 года в 14:20, вскоре после отправления со станции шанхайского метро Лунъян Лу (龙阳路long yang lu), произошло возгорание батареи в шанхайском экспрессе, построенном компанией Transrapid. Была произведена эвакуация пассажиров, на место прибыли пожарные подразделения и к 15:40 пожар был ликвидирован, жертв и пострадавших нет. В результате проведённого расследования было выяснено, что причиной была неполадка в электрических системах маглева, возникшая в установленном на борту батарейном модуле.
  • 22 сентября 2006 года на испытательном полигоне компании Transrapid в Эмсланде (Германия) из-за сбоя в сигнализации произошло серьёзное крушение поездов — маглев Transrapid 08 на скорости около 170 километров в час врезался в вагон ремонтной службы, в результате инцидента 21 человек погиб и 10 были серьёзно ранены. После почти годичного расследования причиной аварии была названа человеческая ошибка, вину возложили на трёх сотрудников Transrapid.